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Advancements in comprehending the biogenesis, dependencies, and mutational landscape of
multiple myeloma dramatically expanded over the past two decades. This knowledge progress
was paralleled by similar surge in novel therapeutics discovery, including the unveiling of new
targets and classes of drugs. These advancements presented us, however, with novel challenges
to prognosticate the disease with greater precision accounting for its individual biologic,
genomic, and therapeutic features.

How Did We End Up Here?

Since the coining of the term multiple myeloma by von Rustizky in 1873,2 it became clearly
evident over the years that indeed patientswithmultiplemyeloma differ in their disease biology
and have variable outcomes. But it was not until nearly a century after, in 1975, that Durie and
Salmon introduced a method for measuring myeloma cell mass that helped prognosticate the
diverse disease outcomes.3 The Durie-Salmon (DS) classification was derived by analyzing
clinical and biochemical covariates from 71 patients with newly diagnosed multiple myeloma
(MM), where through multivariate regression analyses, they demonstrated that myeloma cell
mass can be predicted on the basis of the extent of bone disease, degree of anemia (hemo-
globin), the presence of hypercalcemia, and the quantification of the monoclonal protein in the
serum and urine. This DS classification remained widely in use until 1995 when the Interna-
tional Myeloma Working Group (IMWG) adopted the International Staging System (ISS)4,5 as a
simplified prognostic classification for multiple myeloma. The ISS only required two readily
available measurements of serum b2-microglobulin and albumin and hence was rapidly
adopted as a simplified classification of this disease. However, the IMWG also recognized the
shortcomings of the ISS staging system with its inability to identify all high-risk patients and
the lack of integration of clonal plasma cells’ cytogenetic and molecular genetics. A consensus
by the International Myeloma Workshop in 2003 summarized a decade of variable genomic
aberrations identified in multiple myeloma, recognizing their role not only in the disease
biogenesis and classification but also in their clonal evolution and progression.6 These discoveries
led to the proposed translocations and cyclin D dysregulation-based classification (also referred
to as translocation and cyclin D [TC] classification) by Bergsagel and Kuehl,7,8 a classification of
patients with myeloma into eight genetic subgroups. This TC classification provided a unified
model of postgerminal center initiating events in multiple myeloma and afforded disease
prognostication on the basis of genetic events with suboptimal outcomes correlated with hy-
podiploid disease.7,8 Shortly after, the Arkansas University group proposed the gene expression
molecular classification of multiple myeloma with a high-risk signature of 70 genes mostly
mapping to chromosome 1.9,10 Other gene array–based prognostic classifiers on the basis of the
Affymetrix array platform followed suit, including, among others, IFM15 and SKY92.11,12

With this wealth of cytogenetic and gene expression profile (GEP) signatures, two decades after
the release of the ISS, the IMWG introduced in 2015 the revised ISS classification (R-ISS),13

integrating cytogenetics with fluorescence in situ hybridization (FISH) probes for the detection
of deletion chr17p and translocations involving the immunoglobulin heavy chain gene locus on
chromosome 14q32 with oncogenic partners mapping to chromosomes 4p16 (NSD2, FGFR3) or
16q23 (MAF). Along with high-risk cytogenetics, the R-ISS also included the presence of el-
evated serum lactate dehydrogenase as markers for high-risk disease to refine the ISS stage III
definition. The reign of the R-ISS was short-lived with a second revision of the ISS (R2-ISS)
recently introduced to account for the prognostic impact of the chromosome 1q gain or
amplifications.14

ACCOMPANYING CONTENT

Article, p. 1229

Accepted January 19, 2024

Published March 7, 2024

J Clin Oncol 42:1207-1210

© 2024 by American Society of

Clinical Oncology

View Online
Article

ascopubs.org/journal/jco | Volume 42, Issue 11 | 1207

D
ow

nl
oa

de
d 

fr
om

 a
sc

op
ub

s.
or

g 
by

 1
98

.1
33

.1
71

.6
 o

n 
A

pr
il 

9,
 2

02
4 

fr
om

 1
98

.1
33

.1
71

.0
06

C
op

yr
ig

ht
 ©

 2
02

4 
A

m
er

ic
an

 S
oc

ie
ty

 o
f 

C
lin

ic
al

 O
nc

ol
og

y.
 A

ll 
ri

gh
ts

 r
es

er
ve

d.
 

https://orcid.org/0000-0001-7353-7034
https://doi.org/10.1200/JCO.23.02781
https://ascopubs.org/doi/full/10.1200/JCO.23.01277
http://ascopubs.org/journal/jco
http://crossmark.crossref.org/dialog/?doi=10.1200%2FJCO.23.02781&domain=pdf&date_stamp=2024-03-07


Are We There Yet?

It is clear that the R2-ISS is not the last risk prediction al-
gorithm we will have in multiple myeloma. As recognized by
the authors of the R2-ISS, their revised classifier does not
include numerous recently validated prognostic cytogenetic
features such as chromosome 1p32 deletion or trisomy 21,15

nor does it account for the co-occurrence of chromosomal
events now recognized as double-hit myelomas,16 lambda
light chain,17 and MYC translocations.18 In addition, it does
not incorporate other noncytogenetic prognostic features
such as circulating tumor cells19,20 and extramedullary
disease.21 Furthermore, transcriptome, exome, and whole-
genome tumoral sequencing studies unraveled previously
unrecognized genomic events and signatures. Analysis of the
CoMMpass study identified novel molecular subgroups on
the basis of their transcriptional profiles. It demonstrated
the evolutionary dynamics of these signatures with nearly a
quarter of patients transitioning to high-risk subgroups at
first relapse.22 Walker et al23 also combined single-
nucleotide mutations (SNVs) and APOBEC signatures, with
ISS demonstrating the prognostic impact of SNVs. Finally,
whole-genome sequencing studies revealed the role of
mutational signatures and structural variants, particularly
APOBEC and chromothripsis, not only in myeloma patho-
genesis but also in disease survival outcomes.24,25

These complex genomic events in multiple myeloma, their
interplay, weighted prognostic features, and their modula-
tion by administered therapies at the individual patient level
must be accounted for in any future individualized disease
risk classifier. Such a classifier also needs to be scalable and
adaptable to account for the rapidly expanding novel ther-
apies, particularly immune-based adaptive T-cell therapies.
While the R-ISS and R2-ISS have served us well in the
pregenomic (in particular whole-genome studies) and large
data era to prognosticate and predict myeloma disease
outcomes, it is clear that we now need to integrate all the
clinical, biologic, genomic, and immune features into one
classifier that can be contextualized on the basis of the
therapy received or to be administered.

How Do We Get There?

Mining complex cancer data sets exponentially expanding
with the adoption of whole-genome and single-cell

sequencing studies will only be effectively accomplished
through artificial intelligence (AI). AI tools such as artificial
neural networks (ANNs) can incorporate complex data and
discern associations among variable features into adaptable
classifiers.26 Maura et al1 apply such tools integrating clin-
ical, genomic, and treatment variables to build a model that
accurately predicts individualized risk in MM (IRMMa). To
this end, they collected clinical, genomic, and therapeutic
data from 1933 patients with newly diagnosed myeloma.
Accounting for 20 genomic features, including chr.1q21 gain
or amplifications, deletion chr.1p32, TP53 loss, NSD2
translocations, APOBEC mutational signatures, and copy
number signatures such as chromothripsis, the authors
reclustered previously defined FISH-TC or GEP subgroups
into 12 molecular subgroups. Importantly, these newly de-
fined molecular subgroups added valuable insights to the
impact of co-occurring genomic aberrations on the survival
of FISH-TC– or GEP-defined subgroups. In particular, the
TC1 group harboring t(11;14) was divided into two:
CCND1_Complex (9.4%) and CCND1_Simple (8.9%). In the
CCND1_Complex, t(11;14) co-occurred with several dele-
tions, 1q gain/amp, and chromothripsis signatures, while the
CCND1_Simple lacked these features. Importantly, the
CCND1_Complex had poorer survival compared with those
in CCND1_Simple. Similarly, the hyperdiploid group was di-
vided into three subgroups, including an HRD_Complex
group enriched for aneuploidy and chromothripsis signatures
and associated with poor outcomes. Providing such increased
resolution to the currently defined molecular subgroups al-
lows us to explain the unexpected poor outcomes encountered
in some patients who until nowwould be classified as good or
standard risk. Figure 1 summarizes the features included in
IRMMa and the overlap with ISS, R-ISS, and R2-ISS.

This comprehensive integration of complex clinical, bio-
logic, and genomic features afforded the herein-proposed
IRMMa model accuracy for predicting survival outcomes
significantly higher than all previous comparator prognostic
models such as ISS, R-ISS, and R2-ISS. Of note, despite the
comprehensive genomic data integration into this classifier,
clinical features such as age and ISS retained their relevance
for the model accuracy. Notably, the authors also noted that
while the genomic features were key determinants of disease
progression during induction therapy, the choice of first-
line treatment significantly affected the risk weighted by
poor clinical and genomic variables.

THE TAKEAWAY

In the article that accompanies this editorial, Maura et al,1 assisted by artificial intelligence and deep neuronal networks,
have introduced the first individualized risk-prediction model for newly diagnosed multiple myeloma. This risk-prediction
approach is the way forward for the dynamic integration of an ever-widening array of complex genomic, biologic, and soon
immunologic features and will permit us to offer patients with myeloma a comprehensive individualized risk prediction
adapted to the therapy they will receive.
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Finally, since the IRMMa is amultistatemodel, it does permit
individual patient risk prediction on the basis of not only the
molecular risk classifier but also the therapy patients receive
as far as the type of induction regimen, upfront or deferred
autologous hematopoietic cell transplantation, and whether
consolidation or maintenance were administered. As such,
the authors identified significant differences in the treat-
ment variance among the 12 genomic groups they defined,
each having predictable sensitivity to different therapies.
Hence, the novelty and relevance of this new classifier are
that it not only affords us a higher genomic resolution of the
complex clinical and genomic features but also predicts
individualized patient risks within the context of selected
therapeutic strategies.

Big Data and AI-Assisted Classifiers

While AI-assisted tools such as ANN are very useful for
complex data integration and risk prediction model genera-
tion, it is crucial to recognize their limitations and validate
their usefulness in current clinical practice. In particular, the

models constructed by ANN largely rely on big data and
the quality of the data sets used for their model prediction.
In multiple myeloma, the discovery and adoption of novel
therapeutics (including immune-based therapeutics) are
expanding at a pace that is not always permissive for big data
generation. Hence, some limitations of the current work and
proposed classifier include the relatively small data set used
(despite being the largest genomicdata set to date) and the lack
of integration of training data sets with regimens containing
immune-based therapies such as anti-CD38 antibodies.

Overall, to our knowledge, the herein-proposed risk clas-
sifier by Maura et al1 is the most comprehensive to date,
integrating established disease clinical variables with 20
genomics features, providing an accurate, individualized risk
prediction of treatment outcomes vastly superior to that
afforded by currently adopted risk scores and classifiers.
However, further validation will be required before the full
adoption of this new classifier, especially to account for the
introduction ofmonoclonal antibodies and adaptive immune
therapies to the disease treatment armamentarium.

ISS

R_ISS R2_ISS

IRMMa

Age, sex, race
t(14;20)
t(11;14)
APOBEC
CNV_sig

Genomic_features
Therapy

1q_amp/gain

LDH
Del17p
t(4;14)
t(14;16)

Beta2-microglobulin
albumin

FIG 1. Venn diagram depicting the features included in the ISS, R-ISS, R2-ISS, and IRMMa
risk-prediction models. 1q_amp/gain 5 chr 1q amplification (≥four copies) or gain (three
copies), CNV_sig 5 copy number variation signatures (including chromothripsis),
Genomic_features include SNVs in SAMHD1or PIK3CA, wild-type versus monoallelic
versus biallelic deletion/mutations in TP53, RB1, FUBP1, TGDS, DNMT3a, BTG1, RPL5, and
other structural variants: chr9gain, Del 2q37.3, Del 7p22.2, Del 10q26.3, Del 12p13.2, and
Del 20q13.12.2. Therapy refers to the induction regimen (includes lenalidomide, thalid-
omide, bortezomib, carfilzomib, cyclophosphamide, low-dose melphalan, or any platinum-
based chemotherapy) and postinduction (includes AHCT after high-dose melphalan
and/or maintenance therapy). The IRMMa tool is available online.27 AHCT, autologous
hematopoietic cell transplantation; IRMMa, individualized risk in MM; ISS, International
Staging System; LDH, lactate dehydrogenase; MM, multiple myeloma; R-ISS, revised ISS
classification; R2-ISS, second revision of the ISS; SNVs, single-nucleotide mutations.
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